
International Journal of Theoretical Physics, Vol. 36, No. 2, 1997 

Fourier Duality As a Quantization Principle 
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The Weyi-Wigner prescription for quantization on Euclidean phase spaces makes 
essential use of Fourier duality. The extension of this property to more general 
phase spaces requires the use of Kac algebras, which provide the necessary 
background for the implementation of Fourier duality on general locally compact 
groups. Kac algebras--and the duality they incorporate--are consequently 
examined as candidates for a general quantization framework extending the usual 
formalism. Using as a test case the simplest nontrivial phase space, the half- 
plane, it is shown how the structures present in the complete-plane case must 
be modified. Traces, for example, must be replaced by their noncommutative 
generalizations--weights--and the correspondence embodied in the 
Weyl-Wigner formalism is no longer complete. Provided the underlying algebraic 
structure is suitably adapted to each case, Fourier duality is shown to be indeed 
a very powerful guide to the quantization of general physical systems. 

1. INTRODUCTION 

The complete quantum description of a physical system presupposes 
the identification of the space of observables, the scene of its dynamical 
evolut ion.  In  the c lass ica l  descript ion,  this space cor responds  to a subalgebra  
of  the a lgebra  t Y ( M )  o f  inf ini tely di f ferent iable  funct ions on the phase space. 
When  the lat ter  is the l inear  space R 2 (or R2~), the re la t ionship be tween the 
quantum and the c lass ica l  cases  is wel l  known,  g iven  as it is by the Weyl  
cor respondence  prescript ion.  The  cor respondence  assumes  the exis tence (and 
knowledge)  o f  a poss ib le  c lass ical  vers ion o f  the sys tem and of  a genera l  
p r e s c r i p t i o n - - " q u a n t i z a t i o n " - - t o  t ransform the c lass ica l  into the quantum 
description.  The  u l t imate  goal  is to uncover  some "grand pr inciple ,"  a rule 
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providing directly the quantal description: given a system, we should be able 
to identify the observables and their space without the mediation of classical 
quantities. It would then be possible to describe even purely quantum systems, 
for which there are no classical limits. Such an objective is still far ahead 
and for the present time we are condemned to proceed from classical systems, 
trying to work up a general procedure of quantization from particular exam- 
ples. This triM-and-error approach blends rigorous assumptions with infer- 
ences from previous case-study experience. 

The Weyl prescription, in its original form (Weyl, 1931), makes use of 
a very particular kind of duality, the Pontryagin duality, which holds only 
when the underlying group of linear symplectomorphisms is Abelian. The 
Pontryagin dual of an Abelian group G is the space of characters, which is 
also an Abelian group, though not necessarily the same. Thus, the Euclidean 
spaces R n and the cyclic groups Zn are self-dual in this sense, but the circle 
and the group of integers are dual to each other. The link between these 
groups is provided by generalized two-way Fourier transforms mapping the 
LLspace of one into the L~-space of the other, and for this reason we shall 
use the expression Fourier duality as a synonym of (eventually generalized) 
Pontryagin duality. In the Euclidean linear case, the Abelian group involved 
is formed by the translations on phase space, which is isomorphic to its own 
Fourier dual: the Fourier transforms of functions on R 2 are functions on R 2. 
Given the Fourier transform f of a classical dynamical function f, the Weyl 
prescription yields the corresponding operator (q-number function) as a Fou- 
rier transform of f with a projective operator kernel. A formal inverse proce- 
dure [first considered by Wigner 0932)], involving an integration on an 
operator space, gives then the corresponding c-number function (Hillery et 
al., 1984; Lee, 1995). These c-number functions and their Fourier transforms 
belong to twisted (noncommutative) algebras, different from the usual Abelian 
algebras of convolution and pointwise product. The twisted convolution on 
LI(R 2) and the Moyal product on L~(R 2) arise naturally from the projective 
operator product through the Weyl correspondence. Because of this "quan- 
tum" origin, the deformation of the usual algebras of functions on phase 
space they represent is considered a quantization (Bayen et al., 1978). 

The main difficulty comes from the fact that, for general systems, includ- 
ing those whose phase space is the Euclidean space, the group acting on 
phase space (a group of linear symplectomorphisms, here called special 
canonical group) is not Abelian and/or compact. On compact groups the 
integration implied in the Fourier transform is defined in a simple way, as 
there exists a unique Haar measure, which is both left- and right-invariant. 
Among noncompact groups, the existence of Haar measures is assured only 
for those which are locally compact, though in general the left-invariant and 
the right-invariant measures differ (when they happen to be equal, the group 
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is said to be unimodular). Group-to-group duality is, however, restricted to 
the commutative case: the space dual to a non-Abelian group is no longer a 
group, but an algebra. Duality must be understood no longer as a relationship 
between groups, but as a relationship in a wider category. A fair formulation 
for the general locally compact case was obtained in the 1970s and led to 
the introduction of Kac algebras. These are Hopf-von Neumann algebras 
with peculiar generalized measures, called Haar weights. Actually, for nonuni- 
modular locally compact groups, Fourier duality is only possible in the Kac 
algebra framework. We must abstract from groups to Kac algebras in order 
to have a Fourier duality. In this sense the usual Weyl correspondence is part 
of a highly nontrivial projective duality for the Abelian group R% where an 
algebra generated no longer by linear, but by projective operators comes into 
play (Aldrovandi and Saeger, 1996). 

Our objective here is to take a step further in the question of quantization 
through the study of these analytic-algebraic aspects. The algebraic facet is 
better known: it is necessary to resort to Hopf-von Neumann algebras. These 
algebras are, however, rather involved operator algebras, on which many 
different topologies and measures can be defined. The analytic facet lies 
precisely in the choice of the correct topology and measure. Our guiding 
idea will be the assumption of Fourier duality, which stands at the heart both 
of the Weyl quantization approach and of the group duality alluded to above. 
Since Fourier duality in its more general form is implemented in the Kac 
algebra structural frame (Enock and Schwartz, 1992), we argue that it is also 
able to provide a generalized Weyl prescription for quantizing a phase space on 
which a separable locally compact type I group acts by symplectomorphisms. 

We take as a test case the simplest nontrivial example of phase space: 
the half-plane. The fact that the configuration space IL. is Abelian, that the 
manifold of the special canonical group coincides with the phase space 
manifold, and that there is no need to consider central extensions of this 
canonical group accounts for the relative simplicity of the example. Its non- 
triviality comes from the nontrivial properties of the group, which, besides 
being non-Abelian and noncompact, is nonunimodular. These are important 
features, which bring to light the main difficulties of quantization on a 
general phase space. Specifically, this example also shows why the usual 
Weyl-Wigner quantization procedure does not generalize straightforwardly 
and does not always lead to a generalized Moyal bracket (Moyal, 1949), or 
to a deformation of the algebra of functions on phase space. Although this 
example does not cover quantization on a general phase space, where the 
respective canonical group may have little to do with the space in which it 
acts (Isham, 1984), we believe the duality principle it illustrates can be 
generalized to quantization on any phase space to which an operator algebra 
can be associated, as is done in Landsman (1993). 
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We begin with an exposition of the classical picture on the half-plane 
in Section 2. In order to select a group on phase space, we use Isham's 
canonical approach, which, though not quite general, is enough for the case 
in view. In the next section we give some details and classify the induced 
irreducible representations of the half-plane special canonical group, which 
is in fact a special parametrization of the affine group on the line (conversely, 
we show in the Appendix that the half-plane is the unique nontrivial homoge- 
neous symplectic manifold of the affine group on the line). Since it seems 
that neither Hopf-von Neumann nor Kac algebras are structures quite familiar 
to the physics community, we review them in a separate section. We emphasize 
those Kac algebras which are related to groups, in order to show how group 
duality is attained. At the end of that section we also show how to decompose 
the operator Kac algebra of a type I group according to its unitary dual. 
This is not found in the Kac algebra literature and will be essential to the 
interpretation of the Weyl formula in the duality framework. The half-plane 
case, used all along more as a gate into nontrivial aspects, is finally considered 
for its own sake and given its finish in Section 5. The whole treatment leads 
to a reappraisal of the reach and limitations of the Weyl-Wigner formalism 
as a guide for quantization on general phase spaces. 

2. THE SPECIAL CANONICAL GROUP 

The phase space we want to quantize on is the half-plane R+ • R, the 
cotangent bundle of the configuration space given by the half-line P.,+. On 
this symplectic manifold we use the coordinates x and p, in terms of which 
the symplectic form, given as the derivative of the Liouville canonical 1- 
form, is 

co = dOo = dp A dx, x E R+, p E R  

The symplectic form implements, through the equation 

ix/tO = - d f  (1) 

a homomorphism between the space of C~-functions (Hamiltonians) and the 
space of symplectic Hamiltonian vector fields, whose kernels are the con- 
stants. Since to is nondegenerate, (1) can be solved for the vector fields and 
yields, in the above coordinates, Xf = 0pf Ox - 0~t" 0p. The symplectic form 
also provides a Lie algebra structure on the C~-functions, as it defines the 
Poisson bracket by 

{f, g} = - to (Xf ,  Xg) (2) 

which is isomorphic to the Hamiltonian vector field Lie algebra through 

fx: ,  xg l  = 
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We shall follow Isham (1984) in the first steps. To quantize a phase 
space we start by looking for a finite-dimensional (for simplicity) group 
whose elements act as symplectomorphisms, that is, preserve the symplectic 
structure. The action must be transitive, so as to avoid any lack of globality 
in the quantum description, and also (quasi-)effective. It is thus necessary to 
find a finite-dimensional group Ghp under whose action the half-plane is a 
symplectic homogeneous G-space. The task can be simplified by proceeding 
as follows. Consider a group whose manifold is the configuration space, 
(R+, .), and make it act on a linear space so as to get at least an almost- 
faithful representation (a representation whose kernel is discrete). Take the 
action of R+ on R given by 

h ~ R+ ,-. Rx(a) = a k ,  a ~ R (3) 

Construct the semi-direct product group R+ Q R, with the product operation 
given by 

(k, a)(p, b) = (Xp, a + ~bx(b)) 

where +x(b) = R ~ l ( b )  = b l k  is the homomorphism on R given by the 
representation R* contragradient to (3). The identity in R+ Q) R is (1, 0) and 
the inverse element of (h, a) is given by (h -l,  +~-I(-a)), with +x-~ = 
~-~. 

Considering the left action 

l(x~)(x, p) = (hx, p l k  - a)  

of this group on the space R+ • R, we see that Ghp = 1L Q R is formed by 
some special linear canonical transformations on the half-plane. Actually, we 
show in the Appendix, using Kirillov's orbits method (Kirillov, 1976), that 
the half-plane is the only nontrivial symplectic manifold canonically invariant 
by Ghp. 

The Lie algebra ~3hp of  Ghp Can be obtained from the group product with 
the help of the formula 

etaeSBe-JAe-SZ = ets[A,B]+higher orders in t,s 

and is given on R ~) R by 

[(1, a), (r, b)] = (0,  a r  - lb)  (4) 

It is straightforward to realize this Lie algebra in terms of symplectic Hamilto- 
nian vector fields on the half-plane. By the exponential mapping (1, a) ,-. 
(e l, a) ~ R+ Q R we introduce the one-parameter subgroups t ~. (e  It, 0) ,  

s ~ (1,  as ) ,  whose action on R+ • R, 

lt, a(X , p )  = (ettx, e - t t p  - as )  
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is easily found to be generated by the symplectic Hamiltonian (right-invariant) 
vector fields 

X,.,~(x, p )  = lxO~ - (lp + a)Op 

corresponding to the Hamiltonians ht,a(x, p )  = a x  + lxp. On C~(R+ • R) 
these Hamiltonians define a Poisson subalgebra by 

{htn, hr, b} = ho,ar-lb (5) 

whose structure is identical to that of (4). We can then say that there is a 
faithful momentum mapping J: T'R+ ---> qJ~'p, allowing the association of the 
pair (l, a) ~ qh~p to the Hamiltonian function hi, a by the duality pairing (J(x,  
p), (/, a)) = hl,a(X, p). By this Lie algebra isomorphism we privilege the 
functions ht, a as a preferred class of observables to be quantized. Also because 
of this isomorphism, there is no need to central-extend q3hp as happens in the 
complete-plane case. In other words, the cohomology space HZ(~hp, R) 
H2(Ghp, R) is trivial (Isham, 1984). It is then possible to take the unitary 
irreducible linear representations of the special canonical group realized in 
terms of operators on a given Hilbert space and try to find an unbounded 
operator (representation generator) in correspondence with each preferred 
observable on the half-plane. In the next section we will provide the represen- 
tations necessary to characterize such operators, but, in contrast to Isham's 
approach, functions will be associated to bounded operators fi la Weyl, which 
means that we shall work at the group representation level. 

3. INDUCED REPRESENTATIONS AND THE UNITARY DUAL 

Irreducible unitary representations of semi-direct product groups are 
easily constructed via Mackey's induced representation theory (Mackey, 1978; 
Barut and Raczka, 1977; Gurarie, 1992; Sugiura, 1990). In this section we 
construct irreducible unitary representations of Ghp = R+ Q R by that method. 
We first note that a Ghp element g = (h, a) can be decomposed into its R+ 
and R parts according to 

(h, a) = (h, 0)(1, +~-l(a)) = gR+ga (6) 

and 

(h, a) = (1, a)(k, 0) (7) 

We begin by looking for unitary irreducible representations of the sub- 
group R. This is immediate, since R is an Abelian normal subgroup. Its 
character (one-dimensional) representations on C are given by Vx(a) = e ixa, 
where x is a label contained in the unitary dual group 1~ - R. The Hilbert 



Fourier Duality As a Quantization Principle 351 

space where our induced representation of Ghp will be realized is constructed 
as the space of functions f: Ghp ~ C, which can be decomposed into wavefunc- 
tions ~,f~(g) = Vxl(gR)~(gR+), or, using (6) with g = (h, a), 

f~(h, a) = {exp[-ixd~Zl(a)[}~(h), ~ E L2(P..+) (8) 

and on which fx satisfies 

fs d-~lfx(h,a)12 = fR dh 
+ + 

We indicate this space by Hx(Ghp) and, in agreement with (8), use the fact 
that it is isomorphic to L2(R+). The induced representation of Ghp on Hx(G,~p) 
is then defined, for each x �9 R, by [Tx(g)fx](h) = fx(g-lh), or, directly in 
terms of wavefunctions in the coordinate representation [that is, on L2(R+)], by 

[T~(g)~](hR+) = Vxl([g-lhR+]p.J~([g-lhR+]R+) (9) 

or, even more explicitly, using g = (k, a), h = (p, b), and computing 
g-lhR+ = (h-lp, qb~-l(--a)), 

[Tx(K, a)~](p) = [ exp[/xdp~- l(a)] }~(~.- lp) (10) 

That these operators do represent the group Ghp, 

Tx(h, a)T~(p, b) = T~((X, a)(p, b)) (11) 

follows trivially from comparing the two identities below: applying the left- 
hand side of (11) to ~j �9 L2(R+), we obtain 

[T~(h, a)Tx(p, b)~]('q) = {exp[/xqb~(a)] }[Tx(p, b)~](h-l', 1) 

= (exp{/xdp~l[a + qbx(b)]})~((Xp)-Lq) 

while the fight-hand side gives 

[Tx((h, a)(p, b))~j]('q) = [Tx(Xp, a + qbx(b))}j](Xl) 

= (exp{/xqb~l[a + qb~(b)]})~j((hp)-Iml) 

Unitarity and irreducibility of  the representation (10) will be proved in the 
following. 

Abstracting from the Hilbert space L2(R+), we can write the operator Tx as 

T~(X, a)Ip = exp[ixdp~l(a)] e x p [ - i  ln(k)~] 

where Ip means that the operator acts on the argument p in such a way that 
the multiplication and dilation operators are defined by 

~)~(p) = p~(p) 

4r~(p) = -ipO0~(p ) 
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An operatorial version of the decompositions given at the beginning of 
this section is obtained if we define the operators (dropping Ip from now on) 

T~(h, 0) --- L(h) = e x p [ - i  ln(h)$r] (12a) 

Tx(I, a) -- f'x(a) = exp[/xdPil(a)] (12b) 

with which we have 

Tx(h, a) = ("x(a)L(h) (13) 

where L(h) is identified as the left-regular unitary representation of the group 
(1k, ") on L:(R+). Definitions (12) also allow us to rewrite (6) and (7) in 
operatorial form 

L(h)f,'x(dp~t(a)) = Vx(a)L(h) (14) 

Expanding the identity above according to (12), and recalling that ~bx(a) = 
a/h, we obtain, up to first order in al, l = In h, 

[f~, er] = ib 

Now the unitarity of (10) follows easily from (13) and the unitarity of 
Land  V~, 

T~(h, a) = L(h- t ) f / x ( -a)  

= (,,x( ~b ~- l( _ a))L(h - l) 

= Tx((h, a) - l )  

where the second equality comes from (14). 
At this point we should ask whether there exists an equivalence relation 

between the operators T~. This is an important question if we want to do 
harmonic analysis on the group Ghp = ~  Q) R, as we shall, for we must 
sum (integrate) over the unitary dual Ghp of Ghp, the space of classes of 
inequivalent irreducible representations. To answer the question, we begin 
by observing that the right-regular representation of (R+, .) acts on ~ 
L2(R~) by [R(p)~]('q) = ~('qp). In order to verify whether this operator is an 
intertwining for the T~, we calculate 

[R(p)-lTx(h, a)R(p)~](Xl) = [Tx(h, a)R(p)~](~qp -~) 

= {exp[ixd~L~(a)]}~(h-~xl) (15) 

Now, remembering that R+ acts on R by d~p, we define its associated coaction 
C0 on the character space R by 
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[d~pXxl(a) - Xx(6~l(a)) = exp[/xdp~-I(a)] 

With this at hand, it is easy to see that the coefficient of the wavefunction 
in (15) is just the following coaction: 

[~no-IXJ(a) = ~ ( c ~ l ( a ) )  = X~(~bp o ~b~l(a)) 

= ~'p-'x~(~';~ qa) )  

Explicitly, considering that X~ e 15, -- R 3 x, we have the coaction given by 

~p-,(x) = p-Ix (16) 

We then conclude that the right-regular representationR is an intertwining 
operator for the T's, connecting them by the coaction ~b, 

R(p)-lTx(k, a)R(p) = Tsp-~tx~(k, a) (17) 

We have then three classes of representations: one for x > 0 and one for x 
< 0, both isomorphic to R+; and the one represented by the point x = 0. We 
shall indicate the cases x > 0 or x < 0 simply by --- and write the two 
infinite-dimensional representation operators as 

T_+(X, a) = e-+/~L(X) (18) 

In the case x = 0, we have simply L(h), the left-regular unitary representation 
of (R+, .), To(h, a) = L(h). This representation is reducible, that is, it is 
possible to decompose it in terms of the (R+, -) characters • = h iy y 
R, and write formally 

I2 L = dy Xy 

This gives us an infinity (R) of one-dimensional irreducible representations, 

Ty(X, a) = ~k iy (19) 

Summing up: once we suppose the i~educibi l i ty  of the Tx, which will be 
proved just below, the unitary dual G~p is given by { + } t_) { - } LI R. If we 
compare this result with the orbits of the coad~int  action of Ghp obtained in 
the Appendix, we observe that the formula Ghp = ~'flGhp holds. 

Now, to address the problem of irreducibility of the induced representa- 
tions Tx, we shall refer to an important result of Mackey's theory. Mackey's 
imprimitivity theorem (Barut and Raczka, 1977; Taylor, 1986) for semi-direct 
products states that the induced representations of such groups, in our case 
Tx, will be irreducible if and only if the semi-direct product group R+ Q R 
which it represents satisfies a condition of regularity. This condition essen- 
tially means that the R+-orbits in P,. by the d~ action are countably separated 
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with respect to the Borel structure. This is easily seen to be fulfilled since 
1~ = R_ U {0} U 1L. So, our group Ghp is regular and the representations 
Tx are irreducible. 

The above analysis gives still other important information about the 
group Gho. Type I groups are, roughly speaking, those groups which have 
a well-behaved Borel structure on the unitary dual, more specifically, the 
decomposition of representations of these groups into irreducible representa- 
tions is unique (Mackey, 1957). Good examples are the Abelian and the 
semisimple groups. From another theorem by Mackey (Barut and Raczka, 
1977, p. 536), a regular semi-direct product group, say R+ Q R, is a type I 
group if and only if for each x ~ 1~, its isotropy subgroup Ix is a type I group. 
Well, we know that the orbits through x are given by ~x = R+/Ix, and we 
have found that they are isomorphic either to R+ (P,+, -) or to the trivial {e}. 
Consequently, each isotropy subgroup is necessarily isomorphic to one of 
them, and they are both of type I. 

4. KAC ALGEBRAS AND GROUP DUALITY 

Once we have characterized and constructed the representations of the 
group under which the half-plane is canonically invariant, we must give a 
rule to associate an operator to each observable. To do this we will use the 
powerful techniques provided by the Kac algebras. These algebras were 
constructed in independently by Kac and Vainermann (1974a,b) and Enock 
and Schwartz (1973, 1974a,b) with the objective of generalizing to nonuni- 
modular locally compact groups the Pontryagin (Abelian groups) and Tan- 
naka-Krein (compact groups) duality theorems. A duality for locally compact 
(1.c. from now on) nonunimodular groups, comprising previous work of E 
Eymard, N. Tatsuuma, and J. Ernst on a category wider than that of such 
groups, had already been partially obtained in the seventies by (Takesaki, 
1971, 1972) in the Hopf-von Neumann algebra framework. Unfortunately, 
due to an incomplete theory of noncommutative integration, Takesaki's work 
in that direction had a lack of symmetry. A general duality only was possible 
after considerable knowledge on weights was obtained. This knowledge led 
to the definition of Kac algebras by the addition of a suitable (Haar) weight 
on Hopf-von Neumann algebras. 

Actually, a general duality for locally compact groups is achieved if we 
associate to them two Kac algebras, one on the von Neumann algebra of L ~- 
functions and the other on the von Neumann algebra generated by left-regular 
representations. These two algebras turn out to be dual in the category of 
Kac algebras. This means that, by duality, to each L~-function on the group 
we can make correspond an operator written as a linear combination of 
the left-regular representations. In this section we will introduce Hopf-von 
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Neumann and Kac algebras, apply the latter to groups in order to show the 
1.c. group duality and show how they decompose following the unitary dual 
of a type I group. 

Since Hopf-von Neumann and Kac algebras are, to begin with, yon 
Neumann algebras, we start by recalling some definitions on these algebras 
which will be necessary (see, for example, Bratteli and Robinson, 1987). A 
yon Neumann algebra M is an involutive unital subalgebra of the Banach 
algebra ~ ( H )  of bounded linear operators on a Hilbert space H, closed with 
strong respect to the topology, a topology which is defined by the open balls 
of the family of seminorms llalls = Ila~'ll, t~ E H.  Besides this on ~ (H) 
there is the norm 

Ilall = sup{ IlaOll~, IIOIIH = 1, ~ ~ H} (20) 

As a map I1" I1: M ~ [0, ~], this norm satisfies the following conditions: 

�9 Ilall = 0 if and only if a = 0. 
�9 Ila + b l l -  Ilall + Ilbll. 
�9 Iletall = te t l ' l la l l ,  et ~ C.  
�9 I l a b l l -  Ilall' l lbll .  

The first axiom does not hold for a seminorm. We shall also consider that 
family of  seminorms leading to the ultra(tr)-weak topology. It is given by 
IITII~ = ~ ,  I(Td~i, ~bi)[, where Oi, d~i e H a r e  such that Ei II~ill 2 < ~ and ~i 
II+gll 2 < ~. The predual M,  of M is the (Banach) space of the ultraweakly 
continuous linear functionals on M. 

The word involutive used in the above definition means that on M a 
map *: M ~ M, the involution, is defined such that: 

�9 (eta + 13b)* = ~a* + 13b*. 
�9 ( a b ) *  = b ' a * .  
�9 ( a * ) *  = a .  

Besides these axioms, on avon  Neumann algebra it is also true that JJa*lJ = 
IJaJJ (it is an involutive Banach algebra), J[a*alJ = JlaJl z (it is a C*-algebra), 
and the unit is preserved by the involution, 1" = 1. Finally, a W* algebra is 
an algebra M which equals the dual of its predual, M = (M.)*. It is, roughly 
speaking, an abstract C*-algebra which can always be realized as a von 
Neumann algebra on a suitable Hilbert space H. 

We can introduce at this point the definition of a Hopf -von  Neumann 
algebra. A coinvolutive Hopf-von Neumann algebra is a triple H = (M, A, 
K) where (Enock and Schwartz, 1992) 

�9 M is a W*-algebra. 
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�9 The homomorphism A: M --~ M | M, called a coproduct, is normal, 
injective, and such that 

A I =  1 |  (21a) 

( A |  oA = (id | A) o A (21b) 

The first statement above says that A is unital and the latter that it is 
coassociative. Since A is a homomorphism of  W*-algebras, this means that 
is it linear and 

A(ab) = A(a)A(b) (22) 

�9 There is a map K: M--~ M, called a coinvolution, which is an involutive 
antiautomorphism, that is, which is linear and such that, Va, b ~ M, 

K(ab) = K(b)K(a) 

K(a*) = K(a)* 

K(K(a)) = a 

It is also an anticoautomorphism, 

(~ | K) oA = croAo K 

where o'(a | b) = b ~ a. 

(23a) 

(23b) 

(23c) 

(24) 

H is said to be Abelian or commutative if M is Abelian, and symmetric 
or cocommutative if cr o A = A. Note that from (23c) and (23b) it follows 
that K(K(a*)*) = a, or K o ,  o K o ,  = /d, but the converse is not true. This 
condition is actually weaker than those axioms. One of the differences between 
Hopf -von  Neumann algebras and Woronowicz's "compact matrix pseudo- 
groups" (Woronowicz, 1987) is that this weaker condition is imposed instead 
of (23c), (23b). 

Given a coinvolutive Hopf -von  Neumann algebra (M, A, K), where M 
acts on the Hilbert space H, and a representation IX of its predual M,  on the 
Hilbert space H~, a partial isometry U e ~(H~,) | M such that 

Ix(to) = (id ~ to)(U), to E M ,  (25) 

is said to be the generator of Ix. If IX is multiplicative and involutive, its 
generator U satisfies the respective identities 

(id | A)(U) = (U | 1)(1 | tr)(U ~ 1)(1 | tr) (26a) 

(id | to o K)(U) = (id | to)(U*) (26b) 

In the following we shall also denote (U | 1) and (1 @ ar)(U | 1)(1 | tr) 
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in ~(Hr | M | M by UI2 and U13 , respectively. If 6, "q e H, we define 
the linear form to~,,~ ~ M,  by 

(a, ok,n) -- (a,~l~l)., 

The formula 

(O({x | 13) I~/| ~)n| = (131V.(oJ-y,,.)~)n~., 

Va e M (27) 

a , . t  e H, 13, 8 e n .  
(28) 

coming from (25) and (27), and connecting the representation p, and the 
operator 0 ----- tro U* o o" E M | ~(H~,) (the dual of U), will be very useful. 

Before introducing Kac algebras, some facts concerning weights and 
the representation of avon Neumann algebra by a weight-- the GNS construc- 
t i o n - a r e  worth mentioning. The basic references are Bratteli and Robinson 
(1987) and Enock and Schwartz (1992, Section 2.1). 

Consider a map from the set of strictly positive elements of M, ~p: M + 
---> [0, ~], with the conditions 

�9 q~(a + b)  = q~(a) + q~(b). 
�9 q~(ha) = hq~(a), VK >-- O, where 0-oo _= 0. 
�9 q~(a*a) = q~(aa*). 

The first two conditions define a weight on M, and the three together define 
a trace (Dixmier, 1977). A weight generalizes the concept of a positive linear 
functional on C*-algebras and, in particular, the concept of state. Associated 
to q~ we define the left ideal Ar~ C M by {a ~ MI q~(a*a) < oo}, and the 
involutive algebra At~ as the linear span of {a ~ M§ < ~} _C .N'~ f3 
3/'*, with ,N'* = {a*la E ~ } .  A weight tp is called: 

�9 Normal  if  for every sequence {ai} with upper bound a E M +, ~(a) 
is the upper bound of the sequence { q~(ai)}. 

�9 Faithful ifq~(a) = 0 ~ a  = 0 a  e M § 
�9 Semifinite if At,p is ultraweakly dense in M. 

Given a normal, faithful, and semifinite weight q~ on a von Neumann 
algebra M, we construct a representation of M by the following procedure 
(Bratteli and Robinson, 1987): q~ defines a scalar product in Ar~, through 

(a I b)~ -~ q~(b*a) 

It is actually only a quasiscalar product, since, as q~(a*a) >- O, (a l a)~ can be 
zero. To circumvent this problem, we should factor the left ideal I v = {b 
A I (b I b)~, = 0 } out of ~ r  The quotient is formed by equivalence classes [b] 
of elements b' such that b - b'  is in l,p. Now, Ar~/I~ has a pre-Hilbert structure 
given by the scalar product ([a]l[b]) = (alb)~ which is invariant on each 
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class. Completing N , / I ,  with respect to this product, we get the Hilbert space 
H,. The map 

,r~(a): X j l ~  ~ ,~Jl,~ 

[b] - [ab] 

is bounded and can be extended to H,p as a bounded operator. We call (a%, 
H~) the GNS construction of (M, q0), and a~ denotes the image of a E N ,  
into H~ by the canonical injection a%: dq~ -~ H~ a ~ ~r~(a) = [a]. The 
image 7r~(N~ fq 3q*) is a left Hilbert algebra (Enock and Schwartz, 1992), 
which is isomorphic to M. The image of  the involution * is the operator S~, 
which has the polar decomposition 

= 

This decomposition gives rise to the antilinear isometry J,p: H ,  --> H~, such 
that JMJ = M',  JaJ = a*, and a e Z(M), and to the modular operator A,p, 
where M' = {a e ~ ( H ) l a b  = ba, for all b e M} is the commutant of M, 
and Z(M) = M fq M' is the center of  M. The modular operator satisfies 
A ~ M A J  = M, for all t e R, and this leads to the definition of the modular 
automorphism group trot on M by 

(r?(a) = Ai~aA $ i' (29) 

The modular group cr~ is such that the weight q~ is invariant, q~ -- q~ o (rt ~, 
and is also characterized by the fact that q~ is the unique KMS weight 
associated to it. This short overview on the Tomita-Takesaki theory extended 
to weights will be enough to introduce Kac algebras. 

A Kac algebra K = (M, A, ~, q0 satisfies the following axioms [for a 
good review on Kac algebras, see the first sections of  an article by one of 
its founders, Valnermann 0988)]:  

�9 (M, A, K) is a coinvolutive Hopf -von  Neumann algebra. 
�9 q0: M § --) [0, oo] is a normal, faithful, and semifinite weight on M 

called a Haar weight such that: 
--A(gq,p) C 3q1| A stronger version of this axiom is more manage- 
able and will be used. It says that q~ is left-invariant with respect to 
A, or 

(id | t0)A(a) = q0(a)l, Va E M § (30) 

--q0 is symmetric, Va, b ~ N~, 

(id | q0)[(1 | b*)A(a)] = ~ o (id | q0[A(b*)(1 | a)] (31) 

- - a n d  

K o (rio = tr*--t o K, Vt e R (32) 
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Given a Hopf-von  Neumann algebra H, then a Haar weight which 
makes of H a Kac algebra, if it exists, is unique up to a scalar (Enock and 
Schwartz, 1992, Section 2.7.7). A Kac algebra K is called unimodular if the 
Haar weight tp is a trace and is invariant by K, r = r o K. When r is a trace, 
then it is true that A~ = 1 and r = id, as happens for the Abelian Kac 
algebras of groups described in the next subsection. 

Associated to a Kac algebra there always exists an isometry Wbelonging 
to M | ~(H~), called the fundamental operator, such that 

W(a~ | b,p) = [A(b)(a | 1)]~, a, b e N~ (33) 

This unitary operator implements the coproduct as follows: 

A(a) = W(1 | a)W* (34) 

Let us now introduce the dual of a Kac algebra K based on M. Its 
predual M.  has a product * given by 

(a, to * to') = (Aa, to • to') (35) 

and an involution o by 

(a, too) = (K(a)*, to) (36) 

The predual is thus an involutive Banach algebra. Besides the GNS representa- 
tion of M on H~, there is a multiplicative and involutive representation of 
M .  on the same Hilbert space, 

k: M .  ---> M C ~(H~) 

The representation k is such that k(to) is a bounded operator on 1r~(Ar~) which 
acts on H~, by 

k(to)(a~) = [(to ~ K @ id)A(a)]~ 

and can also be written 

h(to) = (to o K | id)(W) (37) 

h is called the Fourier representation of K. Its image h(M.)  = M is a v o n  
Neumann algebra on which it is true that 

h(to)(to~) = (to * to')~ (38) 

I t where to~ e H~ is the unique vector such that (r = (a*, to'), for all a 
,N'~, and for every 

to' e I~ = {to e M .  Isup{ I(to, a*)l ,  a ~ M, r <-- 1} < ~} 
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Actually, the above condition together with the definition of I v is a generaliza- 
tion of the condition of square integrability for to' ~ M,.  

The dual of the Kac al^gebra K is based on the image M of the Fourier 
representation, K = (M, A, ~,, ~). The dual involution o goes to S~ = 
j.~/~/2, analogously to  its dual. The operator W is unitary and its adjoint is 
gwen by (with Jr = J from now on) 

W* = ( J |  o W o ( J ~ J )  (39) 

Its dual is then written 

if" = o "  o W* o ~r (40) 

and the dual coproduct is given by the dual version of (33), or under the form 

/~(to) = 1~'(1 @ to)l~* (41) 

Furthermore, the dual antipode is defined by ~(h(to)) = h(to o K) or by 
~(to) = jtooj, its canonical implementation on H r. Dualizing this last formula, 
we get a new formula for K in terms of  ): 

K(a) = Ja*J (42) 

The dual weight ~ on hT/is the normal, faithful, semifinite weight canonically 
associated to the left Hilbert algebra (I~ CI i~)~ and is given, for X ~ hT/§ 
by (Enock and Schwartz, 1992, 2.1.1 and 3.5.3) 

{ll+~ll 2 if there exists to E (I~ A J~), such that X = ~(to) 
if(X) = otherwise 

where ~- is the canonical representation (acting on the left by the algebra 
product) of (I v tq 1~)~ on H~, Finally, the Hilbert space H~ is identified with 
H~, Tlais Kac algebra obviously has also a predual/f/,  and a Fourier representa- 
tion k. 

From (37) and by the fact that h is an involutive representation, (26b), 
it follows by using (40) that 

k(to) = (to | id ) (W*)  = (id ~ to)(~V) 

If we compare this formula with (25), we get 1~' as the generator of h. 
Furthermore, if we apply (26a) to if'* = cr o W o ~r, we obtain (A | i d ) (W)  
= (1 | W)(cr | 1)(1 | W)(cr | 1), and from the relation (34) it follows 
that W satisfies the pentagonal  relation 

(1 | W)(cr | 1)(1 | W)(cr | 1)(W | 1) = (W | 1)(1 | W) 

The duality mapping between K and I~ is then performed first by passing 
from M to its predual M ,  and then to M via the Fourier representation k, 
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which is faithful (Enock and Schwartz, 1992, Chapter 4). Since h is generated 
by if' (and, by duality, h is generated by W), we understand the essential 
role played by the operator W in Kac duality. The Kac duality is then the 
fact that I~ is isomorphic to K. 

4.1. The Abel ian Kac Algebra of  a Group 

Given a separable l.c. group G, there are two Kac algebras of special 
significance. The first is defined on the von Neumann algebra L~(G) of 
(classes of almost everywhere defined) measurable and essentially bounded 
functions on G (Kadison and Ringrose, 1986). This means that, for every f 

L~(G), there exists a smallest number C (0 <- C < ~) such that If(x) l <-- 
C locally almost everywhere. This number C is just the ess.sup (essential 
supremum) off.  The norm is given by 

IDql~ = e s s . s u p  If (x)  I 

and the involution by f*(x) = f(x). This algebra acts on the Hilbert space 
L2(G) by pointwise multiplication. This Hilbert space has the L 2 scalar product 

(fl g) = fc dx f(x)g(x) 

and the norm IDOh = ~ f f - ~ ,  where dx is the left-invariant Haar measure on 
G. Then L~(G), with the operations and conditions of the following list, is 
the abelian Kac algebra of G, K~(G) = (L| A, K, q~a): 

f . g(x) = f(x)g(x) 

1 = 1, such that l ( x ) =  1, 

A(f)(x, y) = f(xy) 

~(f)(x) = f ( x -  b 

V x e  G 

(43a) 

(43b) 

(43c) 

(43d) 

t'Pa(f) = IG d.xf(x), f ~ L=(G) + (43e) 

Here C(G) is the algebra of continuous functions with compact support on 
G, whose product is the convolution (see below). The Haar weight is in fact 
a trace, simply the left-invariant Haar measure on G. In consequence, the 
modular operator is reduced to simple multiplication by 1, A~a = 1, and the 
modular group is trivial, trt ~a = id. The underlying Abelian Hopf-Von Neu- 
mann algebra is denoted by H~(G). 
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We also have in this case, for F ~ C(G | G) and f E C(G), 

WF(x, y) = F(x, xy), W*F(x, y) = F(x, x-'y) 

)f(x) = - ~  f~-~- ) 

where A6 is the modular function on G to be defined a few steps below. 
From these data we can use relation (28) to compute the Fourier representation 
for K~(G), 

(W(f ~ g) lh | l) = f6 d,x f(x)h(x) f~ dy g(xy)l(y) 

=fo.Z.Io x  
= (g [ k(tOn$)l) 

We conclude that k(oah:)l(z) = f6 dr h(x)f(x)l(x-lz) or, taking into account 
that tOhf = hf E L=(G), by (27), that 

h(O~h:) = I~ dx ~hAx)L(x) (44) 

Since K~(G) acts on L2(G), it follows from ~p.(f*f) = fo  dx If(x) l 2 < 
that the GNS construction is given by inclusion, with ~ a  = L| D 

L2(G) and At.~ = L ~ (G) D LI(G). The predual is L| = L1(G) and, as 
anticipated, l~a = D(G) N L2(G) is the space of square-integrable functions 
on the predual U(G), on which we now concentrate. 

Given a left-invariant Haar measure dx on a I.e. group G, the space of 
(classes of) functions defined almost everywhere and integrable on G, D(G, 
dx), is the convolution Banach algebra of G with as product the convolution 
(Reiter, 1968) 

( f  * g)(x) = f dy f(y)g(y-lx) (45) 
.Jc 

involution 

f*(x) = Ac, x-~f(x-2~ - ) (46) 

and norm Jill[ = fo dx If(x) I. Here Ao: G --) R+ is a positive and continuous 
homomorphism of groups called a modular function: 

AGe = 1 

Aa(xy) = Ac, xAGy 
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If Ix; and Ixr are left- and right-invariant (Haar) measures on G, respectively, 
that is, ixt(xE) = Ixt(E), IXr(Ey) = ix~(E), for every Borel set E, the function 
A G relates them by the Radon-Nikod#m derivative (Reiter, 1968) 

With A~ -- 1, the two measures coincide and G is unimodular. Changing 
variables in (45) and using the identity 

fG dX f(X) = f~ dr A~ x -I fix -t)  (48) 

we can also write the convolution in terms of the right-invariant measure 
[see (47)] as ( j r ,  g)(x) = f~ dy Acy-lf(xy-t)g(y). 

The algebra C(G) of continuous functions with compact support is dense 
in LI(G), which explains its appearance in some definitions. G is discrete if 
and only if L l has a unit. Otherwise, it has only left and right approximate 
units. In general, the algebra Ll(G) is nothing more than an ideal in the 
following unital algebra. To every f ~ LI(G) we associate a measure dix(x) 
by dt~(x) = f(x) dx. This association implements an involutive isometry 
between the Banach algebras if(G) and M l(G), the unital involutive algebra 
of all bounded complex Borel measures on G with convolution given by 

(ix * v)(f) = fGxC f(xy) dix(x)dv(y)=f~ f(x) d(Ix*v)(x) 

where the unit is the Dirac measure at the identity of  G, Be. With the notation 
f(x)  = f(x-~), which we shall be using from now on, the involution is given 
by Ix*(f) = ix(]') (Reiter, 1968). 

A representation U of G on H is also a representation of  M~(G) and 
is written 

It, '--, U(IX) = fc dix(x) U(x) 

whose restriction to Ll(G) is nondegenerate, 

f ,.-. U(f) = f dx f(x) U(x) 
Jc 

(49) 

There is, in fact, a bijective correspondence between the unitary irreducible 
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representations of G and the nondegenerate representations of L~(G). In 
particular, to the left-regular representation of G there corresponds the operator 

L(f) - - f  = Io dx f(x)L(x) (50) 

whose restriction to  d~,.p a = L2(G) n L=(G) is just that derived earlier as the 
Fourier representation of Ka(G) and denoted h(f). Furthermore, when 
restricted to the space LI(G) O L2(G), L(f) acts by convolution: 

L(f)g = f *  g, g E L~(G) n L2(G) (51) 

L(f) also satisfies 

Lff, g) 

L(f*) = Io dx Ac, X-'~x-~- )L(x) = fa dxf(x)Lt(x) 

=? 

The ~ t o r s  which constitute the image of h form the von Neumann alge- 
bra L=( G). 

The Abelian C*-algebra Co(G) of complex functions vanishing at infinity, 
with norm I[f]l = sup If(x) I and involution given by the complex conjugation, 
has as its dual the algebra M~(G), the duality pairing being given by 

P.(f) = (lJ.,f) = Ic dlJ.(x) f(x) = Ic dx g(x)f(x) 

if dlJ.(x) = g(x) dx. The same duality relation holds between the pair L = D 
Co(G) and L l C Ml(G) as a linear functional on the latter, since LI(G) * = 
L=(G). While we have L| = LI(G), the dual of L = is not L l, but just 
contains it (Kadison and Ringrose, 1986). 

4.2. The Symmetric Kac Algebra of a Group 
A 

The von Neumann algebra L| generated by left-regular representa- 
tions of a l.c. group G is denoted ~(G).  Their generators L(x), x E G, act 
on L2(G) by 

[L(x)f](y) = f(x-ly) 

The norm is given by IIL(x)II -- sup{ IIL(x)/ll, l~12 = 1} and the involution 
by Hermitian conjugation. The product in A4(G) is the representation of the 
group product, L(x)L(y) = L(xy), with unit 1 = L(e) = L Every element 
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(operator) in &(G) is a linear combination of all generators, with functions 
in LI(G) as coefficients, 

f = f~ dxf(x)L(x), f E LI(G) (52) 

which is just the image of the Fourier representation of K"(G) given in (44). 
These operators act on L2(G) by 

~g](x) = Iady f(y)[L(y)g](x) = fo dy f(y)g(y-lx) (53) 

If we further restrict to g ~ LZ(G) N LI(G), (53) turns out to be just the 
convolution (51). The product of operators is written as 

fe. ~ = fo dx fa dy f(x)g(y)L(xy) 

=fadzlodxf(x)g(x-'z)L(z) 

= fa dz (f  * g)(z)L(z) (54) 

With the operator product (54), KS(G) = (~(G),  A, K, tPs) is the symmetric 
Kac algebra of the group G. The other operations are 

AL(x) = L(x) ~ L(x) (55a) 

K(L(x)) = L(x -1) = L-t(x) = Lt(x) (55b) 

q~s(a) = ~ 10q122 if a = f l ' 3  ~ a ~ M+ (55c) 
L +oo otherwise 

Just for completeness and better visualization of  the structure, we rewrite the 
above expressions in terms of the linear combinations (52), whose product 
has been given in (54): 

A(]) = fo dx f(x)L(x) | L(x) (56a) 

K(j) = Ia dx f(x)L(x-l) = Ia dx Ax-lf(x-')L(x) (56b) 

r = f(e), f ~ C(G) * C(G) (56c) 

If F ~ C(G • G), we have 
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t?VF(x, y) = F(y-lx,  y), I;F*F(x, y) = F(yx, y) (57a) 

Jf(x) = f(x), f ~ C(G) (57b) 

In order to see how if' generates h, let us consider the space L2(G, L2(G)) 
of L2-valued functions on G. It turns out to be isomorphic to L2(G) | L2(G) 
by the association +(y)(x) = F(x, y), where ~b(y) ~ L2(G). Actually, h is 
generated by the left-regular representation L of G, whose action on qb(y) 
can be written, with the help of  (57), as 

[L(y)d~(y)](x) = d~(y)(y-lx) = F(y-lx,  y) = [ff'F](x, y) 

This shows that the generator L, as a bounded function from G to ~(LZ(G)), 
can be seen as the operator if" E ~(LZ(G)) | L=(G). 

The modular operator on KS(G) is given by the Radon-Nikod~jm 
derivative 

dq~ a 
A,, d(q~ o K) 

of the trace q% = Ixl on Ka(G). Since by a quick calculation one obtains Ixt 
o K = Ix,, it turns out from the definition of  the modular function (47) that 
the modular operator is just A a. The modular function acts on L2(G) by 
pointwise multiplication and, for f ~ H,,,  

[cr~ffL(x))f](y) = [A~L(x)A~igq(y ) 

= (Aay)i'[L(x)A~i~(y) 

= (Aay)it(Aa(x-ly))-itf(x-ty) 

= (Ac, x)iy(x-ly) (58) 

which gives cr~s(L(x) ) = ( Ac, x)itL(x). 
As the base space for the dual of  KS(G), the predual ~ ( G ) ,  is the von 

Neumann algebra of functionals ~f~: ~ ( G )  --~ C such that ~f,~(/~) = (/~(f) I g), 
which is isomorphic to the Fourier algebra A(G) of those functions h which 
can be written in the form h = f *  ~,f, g ~ LZ(G). Their identification comes 
from (27) and is given through the function tbf~(x) - (L(x-1), &Y.g) = ( f  * 
gD(x). The Fourier representation in this case also follows from (28) and (57), 

(l~V(f@ g)lh ~ l) = ( dy g(y)l(y) ( dx h(x)f(y-lx) 
Jc Jc 

= fa dy g(y)(h * J')(y)l(y) 

= fG dy g(y)~hl(y)l(y) 
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from which we get )t(~Oh:)! = ~h,fl. It turns out that the Fourier representation 
is the identity. By the Cauchy-Schwarz inequality we obtain that A(G) is 
contained in L~(G) [its normic closure in this algebra is just Co(G)], and 
from (38) and the last expression we obtain that it has the usual L=-pointwise 
product as operation. 

4.3. Decompos i t ion  into Irreducibles  

The reducible representations of a type I group G can be decomposed 
into irreducible representations in a unique way (Mackey, 1957). However, 
previous knowledge of the unitary dual (~ of G is necessary to the actual 
realization of the decomposition. The dual is a space consisting of equivalence 
classes of unitary irreducible representations with its Mackey-Borel structure 
and a Plancherel (this name will be justified below) measure associated to 
the Haar measure on G (Dixmier, 1977). The Plancherel measure and the 
type I Mackey-Borel structure will allow us to sum (or integrate) on G without 
ambiguities (Mackey, 1957, 1978). We proceed to obtain the decomposition in 
this section. We will take the regular representation case as a starting point 
and arrive at the decomposition of the von Neumann algebra it generates 
and of the Hilbert spaces they act upon [see, for example, (8)]. For the left- 
regular representations, the decomposition can be written in the form 

L = dl~(ot) T,, 

where ct ~ ~ and dlx(ot) is a Plancherel measure. This corresponds to the 
direct integral decomposition 

JR(G) = dtr(ot) .,R~,(G) 

of the von Neumann algebra underlying KS(G). Since the operators T,~(x) 
provide irreducible representations of G, there should be an analogous decom- 
position of the representation of LI(G), 

L(f) = fC d~(ct) T,~(f) (59) 

with each summand given by 

T,~(f) ==_ ~r = fc dx f(x)T,~(x) (60) 
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This gives a new aspect to formula (52), 

L(f)=fodI.L(oOIGdxf(x)Ta(x) (61) 

Formula (60) is the generalized Fourier transform of f ~ LI(G), whose 
outcome is the operator-valued function fa on G. Its image belongs to the 
von Neumann algebra ~a(G),  which acts on the Hilbert space Ha such that 
L2(G) = .~ d~(ot) H a. 

As regards the weight %, it is a trace if and only if G, or K'(G), is 
unimodular. We can easily show it using (56c) and (54). Restricting to f E 
LI(G) fq L2(G), we get 

q~s~'~) = (f* f*)(e) = fc dr  Ac'x If(x) 12 (62a) 

%(j-t . ~  = ( f , ,  f )(e)  = f~ dr  If(x) 12 (62b) 

where we have also used (48) to obtain (62b). In the unimodular case we 
have the Plancherel formula, which involves a well-defined decomposition 
for % = Tr, as explained in Dixmier (1977). In the general case, where 
symmetric Kac algebras of a nonunimodular type I group are considered, we 
can suppose also the weight % to be decomposed according to 

f; % = dl~(ct) % (63) 

It will be sometimes useful to extend abusively the domain of  % to the 
generators L(x), which can be regarded as left-regular representations of the 
Dirac measures ~x E Mr(G): L(x) = fc dy ~x(y)L(y). In this sense we write 

~e(X) = %(L(x)) = IO d~(et) q~a(T~,(x)) (64) 

which is to be regarded as the explicit general expression for the Dirac delta 
distribution on the group. 

Going further, from (62a) we can write, for f ~ LI(G) D L2(G), two 
expressions: on one hand, % ( f l - ~  = f c  dr  If(x)l 2, on the other hand, 
% ( ~  .~) = f d  dlx(ot ) %[(j-t .9~)a]. We obtain, consequently, 

fGdxlf(x) 12=f~;do'(tX)q~a[C'f')a] 

as a generalization of  the Plancherel formula, where 
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/ -  

S i n c e  f ~ L2(G), it follows that, for almost all or, q~,,[j'*~.)~,,] < ~, and we 
can conclude that)~,, E N ~  for almost all or. Here and in the following almost 
all ot includes the set of  representations whose complement in the unitary 
dual has zero Plancherel measure, that is, the support of this measure. It is 
generally identified with the set of higher dimensional representations. For 
example, in the half-plane canonical group case they are just the infinite- 
dimensional T+_. From (63) we also have that, for almost all or, the q0,~ are 
normal, faithful, and semifinite weights on ~,,(G). 

With the above weight decomposition we are able to write out the inverse 
of the generalized Fourier transform (60). From (56c) it follows that 

f (x)  = ,o~[Lt(x)~ 

whose decomposition 

f (x)  = fC dN.(et) ,0,,[T*~(x)f,,] (65) 

gives f (x)  in terms of the operator-valued function f,, on G. Writing 

f~,(x) =- q0,,[T~(x)j~,~] (66) 

and recalling that f ~ LI(G), we see from (65) that J'~ dx If~,(x) l < or for 
almost all or, that is, that f ,  ~ Lt(G) for almost all or. 

Notice that the generalized Fourier transform defined in (60) and (65) 
is faithful as a map between G and its dual if and only if the Plancherel 
measure accounts for every element of G. Since the Plancherel measure is 
concentrated on the highest dimensional representations, it may happen in 
some cases, like those of  the Heisenberg (Folland, 1989; Taylor, 1986) and 
the special half-plane (Gurarie, 1992) groups, that there are irreducible 
inequivalent representations on G which are missed in formulas (59) and (65). 

We have up to now collected the decompositions of d&(G), of its genera- 
tors L(x), of the Hilbert space L2(G), and of the Haar weight q~,. The question 
coming naturally to mind is whether or not these (irreducible) components 
constitute a Kac algebra. The answer is negative, because the components 
q~ of q~s are not Haar weights in the Hopf -von  Neumann algebra I-~,(G) 
generated by T,~(x). The structure of I--I,~(G) for fixed ot E (~ comes straight 
from the decomposition of  L: 

Tc,(x)T,~(y) = T,,(xy) (67a) 

I = T~,(e) (67b) 



370 Aldrovandi and Saeger 

A,~(T.(x)) = T~,(x) ~ T,~(x) (67c) 

K~,(T~.(x)) = Tt~(x) (67d) 

If  we take q~,~ and try to verify the second axiom for Haar weights, for 
example, we get from the two sides of (31) 

(id | q~,~)[(l @ T~(y))A~(T~(x))] = %,(T~(y-Ix))T~(x) 

K=(id | q~)[A~(T~(y))(l ~ T,,(x))] = q~(T,(y-lx))T~,(y) 

which implies that axiom if and only if x = y. Since there is no warrant that 
q~,(T~(y-lx)) would have as outcome x = y [we have instead (64)], we 
conclude that q0~ is not Haar. Conversely, by the Haar weight axioms, it can 
be proved that a weight qo' is a Haar weight on I-~(G) if and only if tp'(T=(x)) 
= ~e(x). 

The elements of H~,(G) are written 

r~(f) = f~ = Io dxf(x)T~(x), f ~ LI(G) (68) 

This means that they are the images of the inequivalent irreducible representa- 
tions of LJ(G) corresponding to the T,, representations of G. In analogy with 
the relation between the representation L and h, where the latter is a restriction 
of L to Y ~  = L=(G) N L2(G), formula (68) is regarded as a restriction of 
formula (60) to the respective decomposition of.]q'~0 a, that is, as an a component 
.r, of the Fourier representation h. It is thus natural to look for its generator. 
We shall, in what follows, restrict ourselves to separable and type I semi- 
direct product groups of the type G = S Q N, where N is an Abelian normal 
subgroup and S is a unimodular group. This restriction on the group will 
provide more explicit formulas for the Kac algebra decomposition, while 
retaining enough generality to allow the consideration not only of the half- 
plane example envisaged here, but also of other cases of physical interest, 
like the Euclidean motion group E(2), the correct canonical group for the 
phase space of the circle (Isham, 1984). Elements of G will be denoted by 
x = (s, n), y = (r, /) ,  etc., the identity by (e, 0), and the product by (s, n) 
(r, l) = (sr, n + 6s(/)), where ~bs is a homomorphism on N, the action of S. 
In this case, a generalization of what was presented in Section 3 regarding 
the group R+ Q R is provided by Mackey's theory of induced representations 
applied to semi-direct product groups (see also Sugiura, 1990; Gurarie, 1992; 
Barut and Raczka, 1977). If Vy are irreducible representations (characters) of 
N, labeled by y e/f / ,  that theory says that the Hilbert space Hy is formed by 
those functions f~ which satisfy: 

�9 The map (s, n) E G ~ fy(S, n) E C is measurable 
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�9 fy((S, n ) (e , / ) )  = V~l(l)fy(S, n) 
�9 fG/lV dlx(s) Ify(S, n) l 2 < 

where dlx(s) is a G-invariant measure on GIN ~ S [notice that Hy differs 
from H,~ in that the label oL represents classes of inequivalent representations, 
while y represents all (irreducible) representations]. The action of (s, n) 
G on r E S, denoted, (s, n) .r ,  is defined by taking the S component of the 
product (s, n)(r, O) = (st, n) = (sr, 0)(e, ~b~l(n)), according to the decomposi- 
tion (s, n) = (s, 0)(e, ~bj-l(n)) of G in terms of its parts S and N, that is, (s, 
n ) . r  ~ sr ~ S. By the same decomposition, the second condition implies 
that the functions fy can be written as 

fy(S, n) = Vyl(d:;l(n))~(s),  fy(s, O) -- fg(s) ~ L2(S) (69) 

Actually, (69) expresses an isomorphism between Hy (Ha) and Lz(S) for each 
label y (a). In what follows we will suppose that the irreducible representations 
have been already classified, that is, we will work on Ha. On these spaces 
the irreducible unitary induced representations T,~ of G by V~ are given by 

[T,(x)t~l(s) = V~,(cr(x-l . s; x))~(x - l  . s) (70) 

where or(r; x) is a "gaugefied" cocycle on G, or a (S, G)-cocycle relative to 
the invariant class of d~(s)  (Varadarajan, 1970; Gurarie, 1992), that is, a 
Borel map or: S • G ~ N which satisfies 

or(r; e) = 0 (71) 

cr(y. r; x) - or(r; xy) + or(r; y) = 0 (72) 

It is given explicitly by or(r; s, n) = +7,t(n). "Gaugefied" cocycles appear 
already in usual quantum mechanics, even in its discretized version, in which 
the Euclidean phase space is replaced by Z ,  @ Z,  (Aldrovandi and Gal- 
etti, 1990). 

Formula (68) will have an important role in our work. It generalizes 
Weyl's formula (Weyl, 1931) in the sense that it associates (U) functions on 
the group to irreducible operators on the subgroup S. In order to find explicitly 
the generator of the representation T,,(%) of Lt(G),  we consider functions 
E LZ(G, H~) ~ L2(G, L2(S)) and, putting ~(x)(s) = G(s, x), x ~ G, we define 
an isomorphism between the LZ(S)-valued functions on G and the space L2(S) 
| L2(G). Now, the induced irreducible representations on ~(x) E L~(S) are 
given by 

[T~(x)~(x)l(s) = V~(cr(x-n . s; x ) )~(x) (x-1 ,  s) 

= V~(~r(x -~ . s ;  x ) ) G ( x  -~ . s ,  x)  - [ff'~G](s, x) (73) 

This shows that the generator of "r,,, the function T,, in L=(G, 0~(L2(S))), can 
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be seen as an operator fr ~ ~(L2(S)) | L=(G). The operator i f "  is analogous 
to if" not only with regard to the generation of Fourier representations, but 
also because it implements the coproduct (67c). This can be shown by recalling 
the definitions of the induced representations T,~ on H~(G) and L2(S), and 
comparing the following two actions: 

[I,V~'(I @ T,(z))I~'~*G~](s, x) 

= V ~ l ( - ~ ( x  -l  .s; x))Vg~(~(x -l "s; z-~x))G(z -1 "s, z-ix) 

A~T~(z)G~(s, x) = V~l(cr(s; x -  l))G(z- i . s, z-ix) 

The left-hand sides turn out to be equal if we substitute in the fight-hand 
sides the identity cr(x-l.s; z-Ix) = ~r(s; z-l)  + or(x-1, s; x), straightforwardly 
obtained from (72). We have thus that W '~ is the fundamental operator of 
I-I~(G). It is easily verified that it satisfies the pentagonal relation. 

Turning back to (68), we obtain by (70) that the operators v~,~ act on 
L2(S) by 

[ j~]( r )  = IG dlp~(s' n) V~(~r(s-lr; s, n))f(s, n)~(s-lr) (74) 

Since the right-invariant measure on G is the product of  the invariant measures 
on S and N, we have dtlx(s, n) = A(s, n) dlx(s) dtx(n). After the change of  
variables s - l r  = t and by Fubini's theorem, (74) reads 

~,~](r) = fs dlx(t) KT(r, t)~(t) 

in terms of the kernel K~(r, t) given by 

t) = JN dtx(n) A(rt-l '  n)Vc,(cr(t; rt -l ,  n))f(rt -l ,  n) r?(r, 

Introducing a kernel will enable us to write out an explicit formula for the 
weight %.  Also, the following result will help: the modular function o f  a 
semi-direct product group G = S Q N is only a function on S. This is proved 
by using dr~z(x-ly) = Ac, x dr~(y) and the invariance of  the measures on S 
and N: 

drp~((s, n)-l(r, l)) = drlx(s-lr, dpsl(l -- n)) 

= dl~(s-lr) ^ dp,(t~sl(l -- n)) 

= l ~ d p . ( r ) ^ d l x ( l )  

= At(s, n) d'p.(r, l) 
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that is, 

A~(s, n ) =  ~ - A ( s )  (75) 

and, in particular, At(e, n) = A(e) = 1. In Ghp we have 

dr(h, a) = da 

and the left-invariant measure is easily verified to be dl(h, a) = dh da, which 
implies that AChp(h, a) = A(h) = h. Turning back to the general case, a trace 
can be introduced on H~(G) by 

Tr~(]~) = Is dFo(t) K~(t, t) (76a) 

= I~ dw(t) dlx(n) V~(cr(t; e, n))f(e, n) (76b) 

Formula (76a) is a good trace definition because the kernels satisfy 

Is d~(t) KT(r, t)g~(t, K~.g(r, $) s) 

which implies T r . (~L)  = Tr.(],d~). We will now introduce an explicit 
decomposition of the Haar weight in terms of the trace: 

~0~)  --- Tr~(A]'~) = Is dw(t) A(t)KT(t, t) 

= I~ dlx(t) dlx(n) A(t)V~(cr(t; e, n))f(e, n) 

= f~ dllx(t, n) V,~(~r(t; e, n))f(e, n) (77) 

where A is given by (75). Clearly it is not a trace. For example, in the half- 
plane group we have 

1 Ia dhdae+--i"Xf(l'a) 
= hp 

which is a decomposition of the Haar weight q~s, since 

1 f dh da cos(ah)f(1, a) = f(1, 0) 
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Computing ~,(T~(r,/)), which should be ~ ( r , / )  if q~ were a Haar weight, 
we find from this formula another way to see why that does not happen: 

q~,(T~(r, 1)) = ~,(r) f dlx(t) A(t)V~(tr(t; e, 1)) 
3s 

For Ghp this gives 

81(X) dp e +-iap= 81(h) ~r~(a) + 
q~_+(T+_(h, a)) - 2~r + 2"rr - 

while E• q~+_(T+_(h, a)) = 81(k)8(a). Furthermore, from formula (77) the 
function (66) reads explicitly 

f~(r, I) = Ic dtl~(t' n) V,,(tr(t; e, n))f((r,/)(e, n)), f ~ LI(G) 

We now turn our attention to the predual of Af,(G), which, in analogy 
with the Fourier algebra, we call A~(G). As in that case, we introduce the 
representative function &~,x(X) of this new algebra by 

co~,~(x) - (~ ,~ ,  r~(x))  

which, by definition of &~,x as a linear form, is given by the scalar product 

&~.~(s, n) = (T~(s, n)xI ~)L~(s) = (X I T~(s, n){)/3ts) 

= Is dl~(t) V~, l(~(s-It; s, n))x(t)~(t- is) (78) 

where, we recall, ~(s) = {(s-I). The product on A~(G) is obtained by the 
duality shown in (35) from the coproduct on I-I~(G) and is the same Abelian 
pointwise product of A(G), since (67c) is symmetric, and of the same kind 
of the coproduct on KS(G). Also note that the involution on A~(G) is straight- 
forwardly seen from (36) to be just the complex conjugation. These facts 
show that A~(G) is very similar to A(G), differing from it only in that their 
elements should be written according to (78) and depend on the labels ot 
G. As A(G) is contained in L~176 this suggests that As(G) be contained in 
some similar space. To see this better, we compute the modulus of 
&~,~(s, n) and, using the Cauchy-Schwarz inequality, obtain 

I&~,~(s, n) l = I(• n)~)l 

-< I lxlhl lT=(s,  n )~ lh  

= I lx lhU~lh  < ~ 
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since T~ is unitary and • ~ e L2(S). Thus, I &~,~(s, n) l is essentially bounded 
and we can say that A~(G) is contained in L~(G). The index ct just indicates 
the dependence on the labels in t~. 

Using the explicit form of the generator I~ ", we can determine the 
representation % of d/,~(G), = A~(G) by formula (28), 

(~a(~,  f )  l x ~ g)L2(S)| -- (f[ ~a((O~,~)g)L2(G) (79) 

where ~, X ~ L2(S) and f g E L2(G). The left-hand side gives 

(~(~,  D ~ x | g) 

= fa dlxt(s' n)f(s, n) 

• fs dlx(t) V~(~(s-lt; s, n))x(t)~(s-lt)g(s, n) 

= fa dizl(s' n)f(s, n)&~,e(s, n)g(s, n) 

Comparison with the right-hand side of  (79) yields "~, = / d .  Taking ? ,  as an 
ct component of h and recalling that the dual of  KS(G) is built on the image 
of h, we conclude that the dual of  H,~(G) is built on ?~,(A~(G)) C L| that 
is, the dual is contained in H"(G). We also obtain from (38) that, while ~t,,(G) 
acts on L2(S), A~(G) acts on L2(G) (by the pointwise product), which explains 
the asymmetry of the double scalar product in (79). The dual version of 
that formula, 

(W~(f, ~) I g (~ X)LZ(G)~L2(S) ~--- (~ [ Tot((.Og,f)X)L2(S) (80 )  

which is also asymmetric, involves the representation (68) and the operator 
W ~ = tro ff',~* o tr [ f  ~ L2(G), ~ ~ L2(S)], 

[W'~(~, ~)](s, n; r) = V~ Z(cr(r; s, n))f(s, n)t~(sr) 

The left-hand side of (80) then gives 

(w~(f, ~)lg | x) 

= fs dl~(t) ~(t) fa d~;(s, n) V~Z(tr(s-'t; s, n))g(s, n)f(s, n)x(s-'t) 

= fs dl~(t) l;(t) fc dlxl(s, n) tog,/(s, n)[T~(s, n)x](t) 

where the first equality involves a change of variables in S and we have 
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identified tOgj = gJ by (27). Comparison of this result with the right-hand 
side of (80) corroborates formula (68) for "re. If we also introduce in As(G) 
the ot component of the coproduct in Ha(G), this will be implemented by 
W% in the same way that 1~ ~ implements (67c). 

5. QUANTIZATION ON THE HALF-PLANE 

We now have at hand a powerful structure to describe quantization. A 
generalization of the Weyl-Wigner correspondence prescription is incorpo- 
rated in Kac (group) duality. Our objective in this section is to specialize to 
the half-plane case the results of the last section, particularly those concerning 
the decomposition of the Kac algebras. We shall show that the Hopf-von 
Neumann algebra generated by the irreducible operators, together with its 
dual, does provide the framework in which quantization can be described as 
an irreducible component in Kac duality theory. 

Starting from the group Ghp as the closest algebraic entity associated to 
the half-plane phase space, we necessarily have to consider--if we are think- 
ing about duality--the two Kac algebras KS(Ghp) an~d Ka(Ghp). The decomposi- 
tion of the first according to the dual space Ghp leads to the family of 
Hopf-von Neumann algebras I-I~(Ghp), which inherit most of their structure 
from the Kac algebras they come from. Though group duality is lost at the 
Hopf-von Neumann level, a well-defined formula for the decomposition of 
the Fourier representation persists. Adaptation of formula (68) and its inverse 
(65), although not representing a bijection between the group and its dual, 
provides a well-defined mapping between functions and irreducible operators. 

The cohomological differences between the complete-plane and the half- 
plane cases come from the necessity of central-extending the special canonical 
group of the former to the Heisenberg group in order to provide a faithful 
momentum map between its associated Lie and Poisson algebras (Isham, 
1984). Despite these differences, we can regard the Weyl formula as being 
formula (68) for a fixed value of the label et in terms of the Planck constant, 

-- ct(h). This is easily confirmed if we recall that the unitary dual of the 
Heisenberg group//(3) is almost equal (in the almost everywhere sense) to 
any of the D-projective unitary duals (Mackey, 1958) of the bidimensional 
translation group R 2. By the Stone-yon Neumann theorem (Taylor, 1986), 
the former is equal to (Z - {0}) U R 2, while the latter is just Z - {0}. We 
have shown (Aldrovandi and Saeger, 1996) that the Weyl-Wigner formalism 
can be described in terms of the duality of projective Kac algebras. In 
such a projective duality framework for R 2, Weyl's formula comes from an 
expression analogous to (68) for the decomposition of the respective Fourier 
representation, namely 
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fev = fg2 dx dy f(x, y)e -i~o+xp), v E z -  {o} (81)  

where q,/~ are the usual position and momentum operators. Comparing (81) 
with Weyl's formula, we get immediately v = h -l.  Actually, the only formal 
difference between (68) and the original Weyl formula, or (81), is that the 
latter is written in terms of unitary irreducible projective operators instead 
of the linear ones which appear in formula (68). This is a consequence of 
the necessity of a central extension in the complete-plane case. That is, 
quantum mechanics is a theory on a particular Hilbert space and its operators 
generate a particular Hopf-von Neumann algebra whose label in the Kac 
algebra decomposition is just a point in the support of the Plancherel measure 
on the unitary dual space of the group involved. In the half-plane, as observed 
at the end of Section 2, there is no need for a central extension, since the 
cohomology group H2(Ghp, R) is trivial and consequently projective and 
linear representations are cohomologically equivalent. This enables us to use 
the simpler, linear representations. Thus, the analogue of Weyl's correspon- 
dence formula for the half-pl~ee group is given by (68) for a fixed value of 
the labels _-_. From the dual Ghp = { + } I..J { -}  k.) R we have that (68) is 
in this case given by 

f~*- = I~ dk da f(k, a)T• a) 
hp 

f(Y) : fOb dk daf (k ,  a)Xy(h), 
P 

(82a) 

y ~ R (82b) 

Notice that the Hopf-von Neumann algebras I-l+(Ghp) of operators (82a) are 
quite different from those of functions (82b) and denoted Hy(Ghp). They are 
Abelian for each y and their direct integral over R can be identified with H~ 

Recalling that the labels _ correspond to an uncountable infinity of 
equivalent representations in the support of the Plancherel measure, and 
taking into account the physical dimensions of the elements of Ghp (IX] = 
length, [a] = momentum, [h] = [ah] = ['k] = action), we take _+h -1 for 
the representatives of  each class instead of +-, and fix the value of the label 
to be +h  -~. The quantization map is then given by (we will write h instead 
of +h  -~ when it appears only as an indicative of class) 

.fti = f~ dh da f(k, a)e(i~)aOe -(~) In(X/Xo)r 
hp 

(83) 
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where ho is a constant with dimension of length. The self-adjoint operators 
and qr act on the subspace of L2(R+) of functions vanishing at 0 and ~ by 

P6(P) = 06(0) 

~r6(p) = -ihp ~6(P) 
bp 

and satisfy the commutation relation 

[~, ~r] = ihO 

The function f(h, a) is recovered from the operator fn by the inverse map- 
ping (65) 

f(),, a) = ~ q~_**[Tt+,(h, a)]+__,] = ~ f_+h(X, a) (84) 
_h-I +h-I 

where 

which gives 

1 Ic do db e+-~en)~ b) (85) 

1 fc dp db e• a)(1, b)) (86) f_..(X, a) = 2 - ~  hp 

Equation (84) makes explicit the fact that the classical LI-function f has 
contributions from almost all irreducible representations, while equation (86) 
is just the projection of that function into one of its "components." 

The symmetric but non-Abelian Hopf-von Neumann algebra H~(G~p) 
generated by the irreducible operators Th(h, a) is then the operator algebra 
of quantum mechanics on the half-plane. Its trivial structure is analogous to 
that given in (67). On this algebra there is also defined a weight given by 
the plus sign in (85), which is an irreducible component of the Haar weight 
on K~(Ghp), as shown in the previous section. 

On the dual Abelian Hopf-von Neumann algebra H~(Ghp), a typical 
Ah(Ghp) function is that given by 

~x~,~(X, a) = (x/Tn(X, a)6)L2m+) 

= f dp e_(~,,X(p)6(plh ) 
JR +P 

I f  we put • = 6, e3~,~ ~ W~ is to be interpreted as a generalization of  the 
Wigner distr ibution funct ion for the half-plane associated to the state 6. This 
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is justified, for if we compute the expectation value of the operator f~ in the 
state 6, it is given by 

~h)r = (~lf~) = ( dh daf(h, a)W~(h, a) 
.I G hp 

This makes clear the role of W~ as a quantum probability density, the same 
role played by the Wigner distribution in the Euclidean phase space. But 
notice that things here are quite different from the complete-plane case and this 
function does not share most of the properties the usual Wigner distribution is 
known to satisfy. The differences are due to a lack of connection between 
functions in At~(Ghp), like W~, and LI-functions, or the respective operator in 
ktn(Ghp). Banach duality is not able to provide an explicit correspondence 
between these two spaces when the group is not Abelian self-dual like Ghp. 
In the complete-plane case, R z is self-dual and the Banach duality turns out 
to be just the double Fourier transform on the phase space. Furthermore, the 
Abelian algebras L ~ and L = over R z are isomorphic by the uniqueness of the 
Fourier transform (Reiter, 1968). This gives rise to the well-known formulas 
of the Weyl correspondence (Folland, 1989; Taylor, 1986; Hillery et al., 
1984; Lee, 1995), of which the Wigner distribution function is a particular 
case corresponding to the density operator. And, since there is no need to 
consider projective representations in the half-plane case, no 2-cocycle arises, 
that is, neither is the convolution algebra Ll(Ghp) twisted nor the pointwise 
product algebra L~176 ) deformed by any kind of Moyal-like product. 

6. FINAL COMMENTS 

The Weyl-Wigner prescription is based on the Pontryagin duality of 
Fourier transformations. It calls attention to the central role of duality in 
quantization, though it only can be expected to hold in the particular case 
of Abelian canonical groups. We have been concerned with the impact that 
general Fourier duality can have in quantization. The stages for Fourier 
analysis are neither groups nor homogeneous spaces, but Kac algebras. Gen- 
eral Fourier duality requires a pair of algebras and we have considered such 
a pair of "symmetric" and "Abelian" Kac algebras for a particular, type I, 
but non-Abelian and nonunimodular, canonical group. The decomposition of 
the first has led to some Hopf-von Neumann algebras on the group, which 
we have recognized as the natural algebraic arenas where duality plays its 
role and, furthermore, where we can find out how far it is possible to go 
with the Weyl-Wigner approach as a guideline to quantize general systems. 

The open half-plane which we have examined is perhaps the simplest 
case presenting some novel, deep features. It is still globally Euclidean-- 
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though no longer a vector space. Although we have been restricted to a case 
in which the special canonical group and the phase space manifolds coincide, 
the group nontriviality requires new algebraic structures. In particular, since 
the group involved is nonunimodular, it is no longer a trace which is at work, 
but its generalization allowing noncommutative integration--a weight. To 
connect Kac duality and Weyl quantization, we must restrict ourselves to a 
specific irreducible representation of the group involved. The operators in 
that representation generate a Hopf-von Neumann algebra which participates 
in the irreducible decomposition of the symmetric Kac algebra of the canonical 
group. It is in general impossible to obtain an explicit correspondence between 
the L 1- and U%functions on it. From the point of view of Fourier dualit~y, 
this is standard--Fourier transforms in general map L'-functions into G- 
valued operators (L~ only if G is Abelian). In the Wigner formalism 
this corresponds to a failure in the correspondence between the Wigner 
distribution and its density. Generalized Wigner distribution functions only 
make sense if related to density operators and, as such, they are defined as the 
expectation values of the irreducible operators T~. Summing up, generalized 
Fourier duality in the case treated here does provide a prescription for the 
quantization of L'-functions on phase space via a generalized Weyl formula. 
Although it is possible to recover the quantizable c-number function from 
the correspondent Weyl operator, the correspondence is not at all complete, 
since we cannot relate it to its dual L| 

The conclusion is that general Fourier duality does provide a firm guide 
to quantization, though imposing severe restrictions to the simple-minded 
expectations deriving from the results concerning those very simple systems 
for which the phase space is a vector space Since this duality is only achieved 
in the Kac algebra framework, we also conclude that, for quantization pur- 
poses, algebraic structures beyond groups must be considered. 

APPENDIX. COADJOINT ORBITS OF Ghp 

For the sake of completeness we show here that the half-plane is the 
unique nontrivial homogeneous symplectic manifold by the action of the 
group Ghp = R+ Q R. To do this, we realize the group as a 2 X 2 matrix 
group by the correspondence 

(o (h, a) ~ h h l~ ] 

The Lie algebra ~hp can be accordingly realized if we define its generators by 

L = ~  (e'  0)1'=~ = 1/2  ' A = ~ ( 1 ,  t)l,=o = 
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A quick computation is enough to verify that L, A realize the algebra q~hp, 

[A, L] = A 

To get the adjoint action of Ghp on ~hp, we write an arbitrary element 
X of the algebras as X -- XAA + XtL, and compute 

Ad~x,a)X = 0~, a)X0~, a) - l  = (aX t + )~-lXA)A + XLL 

Now, to obtain the coadjoint action of Ghp on ~ p ,  we first find a dual basis 
to Xv = {A, L} in ~ p  through the duality pairing (0 ~, Xv) = Tr(0~Xv) = 
~ ,  and get 

0), o / 
Computing the coadjoint action on an element "q = "qL0 L + "qA0 A e ~ p ,  "q~ 

R, we find 

[Ad&~)~](X) - (0, Ad~a)X) 

= (0, XLL + k( XA - axL) A) 

= X ~ L  + ~ ( X  A - aXL) ' , h  

To obtain it for any X ~ ~hp, we compare with 

[Ad(~,~)'q](X) = (Ad~,a)'q)L XL + (Ad~.~)~)AX A 

which gives finally 

Ad~,~)~ = X'qaO a + ('qt -- a~.'qA) OL (A1) 

The orbits of this action on ~3~'p are given for all (X, a) ~ Ghp. Analyzing 
the coefficients of  0 a and 0 L in (A1), we conclude that there are basically 
two kind of orbits: those for which "qA #: 0, and those for which "qA = 0. In 
the first case the coefficient of 0 A is never zero, but that of 0 L can assume 
any value in R. This characterizes two half-planes, one for "qA > 0 and the 
other for "qa < 0. In the second case ('qA = 0), we have Ad~,~)'q = "IlL OL, 

which means that these orbits consist of the infinity of isolated points in the 
line 'I~A = 0. This concludes our analysis, showing that Ghp has two two- 
dimensional orbits diffeomorphic to the half-plane (~3~p• and an uncountable 
infinity of zero-dimensional orbits (~3~p0) in ~3~'p. 

To conclude, we can also compute the Kirillov symplectic form on the 
orbits passing by "q by the formula u)~ = �89 ^ 0L Since cAt = l, we 
have on ~'p• ~ 1L • R 

to+ = "qA OA ^ 0 L 
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The symplectic form to used in Section 2 is obtained from to_ above through 
the realization 

a ~ Op L ~ pop -- XC~ x 

O3 ~ dp + pd  ln x OL ~ - d  ln x 

and with "qA ---- --X, X ~ R+. 
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